Abstract

This study investigates the influence of stable and convective latent heat release on synoptic-scale vertical motions and the corresponding evolution of an extratropical cyclone during a 48 h period of strong development. The cyclone's early evolution was dominated by dry dynamical processes. By midway through the period, however, forcing by latent heat release accounted for over 50 percent of the upward vertical motions, with the convective component dominating. The cyclone's development was most intense during the second 24 h, despite a decrease in latent heat release. During the latter period, the reduced direct latent heat influence may have been augmented by an indirect influence, in which pre-existing dry dynamical forcing was enhanced by diabatic intensification of vorticity and thermal gradients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.