Abstract

BackgroundOptical diffuse reflectance can remotely differentiate various bio tissues. To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. It was the aim of this study to evaluate the general feasibility of optical soft tissue differentiation by diffuse reflectance spectroscopy under the influence of laser ablation, comparing the tissue differentiation results before and after laser intervention.MethodsA total of 70 ex vivo tissue samples (5 tissue types) were taken from 14 bisected pig heads. Diffuse reflectance spectra were recorded before and after Er:YAG-laser ablation. The spectra were analyzed and differentiated using principal component analysis (PCA), followed by linear discriminant analysis (LDA). To assess the potential of tissue differentiation, area under the curve (AUC), sensitivity and specificity was computed for each pair of tissue types before and after laser ablation, and compared to each other.ResultsOptical tissue differentiation showed good results before laser exposure (total classification error 13.51%). However, the tissue pair nerve and fat yielded lower AUC results of only 0.75. After laser ablation slightly reduced differentiation results were found with a total classification error of 16.83%. The tissue pair nerve and fat showed enhanced differentiation (AUC: 0.85). Laser ablation reduced the sensitivity in 50% and specificity in 80% of the cases of tissue pair comparison. The sensitivity of nerve–fat differentiation was enhanced by 35%.ConclusionsThe observed results show the general feasibility of tissue differentiation by diffuse reflectance spectroscopy even under conditions of tissue alteration by laser ablation. The contrast enhancement for the differentiation between nerve and fat tissue after ablation is assumed to be due to laser removal of the surrounding lipid-rich nerve sheath. The results create the basis for a guidance system to control laser ablation in a tissue-specific way.

Highlights

  • Optical diffuse reflectance can remotely differentiate various bio tissues

  • As the spectra turned out to be not very distinct, advanced methods of analysis, e.g. principal component analysis (PCA) followed by linear discriminant analysis (LDA), were used to differentiate the spectral curves

  • Results before laser ablation Before laser ablation, a high discrimination performance was found for several tissue pairs

Read more

Summary

Introduction

Optical diffuse reflectance can remotely differentiate various bio tissues To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. Optical spectroscopic techniques provide noninvasive and real-time information about the bio-morphological tissue parameters by measuring light scattering and absorption properties. In this context, diffuse reflectance spectroscopy (DRS) has proven to be a straightforward, easy-touse and effective method for optical tissue differentiation regarding premalignant and malignant tissue differentiation [14,15,16]. Our workgroup was able to demonstrate the prospects of diffuse reflectance spectroscopy for optical differentiation of several soft and hard tissue types [17,18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call