Abstract

To study the impact of land—use structure and landscape pattern on water quality at different spatial scales in the Dan River Basin (Qin Ling Mountains, China), water samples from 21 sites along the Dan River were collected in 2022 during the dry and wet seasons, and nine water quality indices were tested. Land—use composition and landscape pattern indices at riverine reach, riparian, and sub—basin were obtained, and correlation analysis and redundancy analysis (RDA) were used to determine the relationship with water quality. The results are as follows. (1) Water quality in the Dan River is better in the wet season than in the dry season; the main pollutants are total nitrogen (TN) and total phosphorus (TP). (2) The impact of land—use composition and landscape pattern on water quality has a scale effect; riverine reach can best explain the water quality. (3) Agricultural land and forest have the greatest impacts on water quality; agricultural land and construction land aggravate the deterioration of water quality, while forest, grassland, and water area have positive effects on water quality. The largest patch index (LPI) and contagion index (CONTAG) were positively correlated with pollutants, while Patch richness density (PRD), Patch shape (PD), Shannon’s diversity index (SHDI), and landscape shape index (LSI) were negatively correlated with pollutants, indicating that with an increase in the impact of human activities on landscapes, the degree of fragmentation decreases patch richness, landscape shape tends to be simplified, and water pollution is eventually aggravated. Land planners should focus on optimizing the land—use structure and landscape pattern to increase the diversity of the landscape. Therefore, strict environmental regulations must be established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.