Abstract

Despite the tremendous contribution of irrigated agriculture in addressing global food security, there is still confusion for farmers and governments about the choice of irrigation mode owing to the drastic environmental impacts of irrigation, including water shortage, energy crisis, and global warming. Exploring the agricultural water-energy‑carbon (WEC) nexus under different irrigation modes helps to accomplish the multi-objective of water & energy saving and carbon emission reduction. In this paper, a conceptual framework was nominated to evaluate the water & energy consumption and carbon emissions for winter wheat irrigation at township level and quantitatively discuss the complex interaction by the coupling coordination degree (CCD) of the WEC system under different irrigation modes in Henan Province, China. We discovered that irrigation modes profoundly affect water and energy consumption and carbon emissions in agriculture, as well as the spatial distribution of CCD from WEC system. Townships under irrigation mode with diversion and irrigation projects as the primary method (WDI) clustered together in the north and east with highest water consumption and carbon emissions, while townships under irrigation mode with rain-fed agriculture as the primary method (PI) accumulated in the west and south with lower water consumption and carbon emissions. Meanwhile, the CCD of the WEC nexus system was in basic coordination (0.40) and showed an unbalanced spatial distribution pattern with high in the southeast and low in the northwest. By comparing four irrigation modes, the coupling level of the WEC nexus system under irrigation mode with groundwater irrigation as the primary method (GI) was better and PI mode was the least ideal. This study helps to further understand agricultural WEC nexus under different irrigation modes and provide references for local governments in selecting appropriate irrigation modes to realize water-energy saving and carbon emission reduction in agricultural activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.