Abstract

Daily online adaptive radiotherapy (ART) provides inter-fraction motion management of the luminal gastrointestinal (GI) structures when delivering abdominal SBRT. One potential drawback of ART is the time-consuming process, and intra-fraction GI changes from completion of the ART process to the end of treatment delivery have not been thoroughly evaluated. We explored intra-fraction bowel motion for patients receiving abdominal stereotactic adaptive radiotherapy (sART) MATERIALS/METHODS: Six patients with abdominal malignancies treated with CT-guided sART on a prospective feasibility trial had additional CBCT's acquired post-treatment (pTx-CBCT). All patients were prescribed to 50 Gy/5 fractions (fx), and the constraint for all GI OARs was V33≤0.5 cc. Time from initial CBCT (I-CBCT) used for adaptive planning to pTx-CBCT was collected. The luminal GI OAR (stomach (S), duodenum (D), small bowel (SB), and large bowel (LB)) were retrospectively contoured on pTx-CBCT. The OAR doses were compared between the I-CBCT and pTx-CBCT. The adaptive plan (PA) and initial plan (PI) doses were overlayed on the pTx-CBCT contours. The PA pTx-CBCT OAR doses were then compared to the PI pTx-CBCT OAR doses. A Boolean OAR structure of all GI OARs was evaluated to remove potential differences in structure definitions between providers. The T-test was used to compare differences in instances of D0.5cc ≥ 33 and 50 Gy. Patient charts were reviewed for grades (G) ≥ 3 toxicity. Thirty fractions (fx) of sART were delivered and pTx-CBCT were acquired in 26 fx. Mean time from I-CBCT to pTx-CBCT acquisition was 66 min (38-98 min). On average at 0.5 cc the PA overdosed the S by 1.74 Gy based on pTx-CBCT anatomy compared to 2.35 Gy by the PI, the D by 0.47 Gy (PA) vs .84 Gy (PI), the SB by 1.14 Gy (PA) vs 1.43 Gy (PI), and the LB by 0.13 Gy (PA) vs 0.60 Gy (PI). The dose to the Boolean OAR structure was on average 2.51 Gy/fx higher than expected when overlaying the PA on the pTx-CBCT compared to 3.38 Gy/fx higher when overlaying the PI on the pTx-CBCT. There was no significant difference in the instance of the PA exceeding D0.5 cc ≥33 Gy vs the PI (p = 0.083), but the PA significantly reduced the instances of D0.5cc≥50 Gy (p = 0.001) compared to the PI. No patient experienced G≥3 toxicity at a median follow-up of 8 months (3-12). These data demonstrate sART led to a significant decrease in dose to GI OARs, particularly for prescription dose or greater, even after accounting for intra-fractional bowel motion. While both the PI and the PA violated the V33 luminal GI OAR constraint in approximately ½ of pTx-CBCTs, the fraction of OARs receiving at least 50 Gy was significantly higher when overlaying the PI compared to the PA. While no G3 toxicities were reported in this small cohort, further studies are needed to characterize if the increased dose to GI OARs over the expected dose is clinically significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call