Abstract

In a hypoxic state, fatty acid breakdown reaction may be inhibited due to a lack of oxygen. It is likely that the fatty acids will be stored as triacylglycerol. The aim of this study was to analyse triacylglycerol synthesis in the liver after intermittent hypobaric hypoxia (HH) exposures. Samples are liver tissues from 25 male Wistar rats were divided into 5 groups: control group (normoxia), group I (once HH exposure), group II (twice HH exposures), group III (three-times HH exposures) and group IV (four-times HH exposures). The triacylglycerol level, mRNA expression of HIF-1α and PPAR-γ were measured in rat liver from each group. We demonstrated that triacylglycerol level, mRNA expression of HIF-1α and PPAR-γ is elevated in group I significantly compared to control group. In the intermittent HH groups (group II, III and IV), mRNA expression of HIF-1α and PPAR-γ tends to downregulate near to control group. However, the triacylglycerol level is still found increased in the intermittent HH exposures groups. Significant increasing of triacylglycerol level was found especially in group IV compared to control group. We conclude that intermittent HH exposures will increase the triacylglycerol level in rat liver, supported by the increasing of HIF-1α and PPAR-γ mRNA expression that act as transcription factor to promote triacylglycerol synthesis.

Highlights

  • Liver is the main organ for the synthesis, oxidation, metabolism, storage and distribution of lipids

  • We demonstrated that triacylglycerol levels in liver tissue were elevated both after hypobaric hypoxia (HH) one time exposure as well as intermittent HH exposure compared to control group (Fig. 2)

  • Our findings in this study demonstrated that there was significant increasing of triacylglycerol level in rat liver after HH exposure compared to control group

Read more

Summary

Introduction

Liver is the main organ for the synthesis, oxidation, metabolism, storage and distribution of lipids This organ plays a role in controlling lipid homeostasis in our body [1]. The triacylglycerol level, mRNA expression of HIF-1α and PPAR-γ were measured in rat liver from each group. Results: We demonstrated that triacylglycerol level, mRNA expression of HIF-1α and PPAR-γ is elevated in group I significantly compared to control group. In the intermittent HH groups (group II, III and IV), mRNA expression of HIF-1α and PPAR-γ tends to downregulate near to control group. Conclusions: We conclude that intermittent HH exposures will increase the triacylglycerol level in rat liver, supported by the increasing of HIF-1α and PPAR-γ mRNA expression that act as transcription factor to promote triacylglycerol synthesis

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call