Abstract
Mass-based analysis of thermodynamic cycle can be a link to realize the matching between the fluid properties, components performance, and operation parameters. The present paper proposes a mass-based analysis for ORC systems using zeotropic fluid mixture, focusing on evaporator and condenser as the phase-change heat transfer components. This proves to be an effective way to investigate the impact of composition shift and the initial working fluid charge on system design performance. Results indicated that liquid-phase zones in both heat exchangers account for about 60 % of total mass. Since the largest composition shift occurs in condensation zone, this relation affects the masses and composition shifts in other zones as well as the overall system. Meanwhile, the relationship between the initial charge and composition shift are analyzed. It is found that the increase of total mass leads to a decrease of mass in two-phase zones and an increase of mass in single-phase zones. It therefore causes a reduction of the average composition shift. Moreover, analysis shows the highest net output work of 2.34 kW, which occurs when the initial working fluid charge rises to 130 % of the design value. However, further increases in mass will have a negative impact on system performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.