Abstract

Given the high demand for energy in the manufacturing industry and the increasing use of renewable but volatile energy sources, it becomes increasingly important to coordinate production and energy availability. With the help of incentive-based programmes, grid operators can incentivise consumers to adjust power demand in critical situations such that grid stability is not threatened. On the consumer side, energy-efficient scheduling models can be used to make energy consumption more flexible. This paper proposes a bi-objective job-shop scheduling problem with variable machine speeds that aims on minimising the total energy consumption and total weighted tardiness simultaneously. We use a genetic algorithm to solve the model and derive Pareto frontiers to analyse the trade-off between both conflicting objectives. We gain insights into how incentive-based programmes can be integrated into machine scheduling models and analyse the potential interdependencies and benefits that result from this integration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call