Abstract

The growing world population has produced an increasing demand for seafood, and the aquaculture industry is under corresponding pressure to fill this demand. The offshore ecology and environment are under significant threat with the continuous expansion of the scale and intensity of aquaculture. Integrated multi-tropic aquaculture (IMTA) is a healthy and sustainable mariculture model based on ecosystem-level management, and has become popular in recent years. It is an effective way to cope with the significant changes in offshore ecosystems under multiple stressors. Phytoplankton bacteria are essential to maintaining the marine ecosystem’s balance and stability. Investigating the changes in the community structure of marine planktonic bacteria can elucidate the impact of mariculture on the marine ecological environment. This study took the fish-shell IMTA system with natural macroalgae nearby as the object, and monitored the plankton community’s structure in the system’s surface seawater for four quarters from July 2020 to April 2021. The space–time distribution characteristics and influencing factors of the plankton community in the surface water were examined. The results showed no significant difference between the planktonic bacterial communities at different sampling sites. There was also no significant difference in the α-diversity index. However, the dominant species and abundance of planktonic bacteria at the sampling sites differed significantly. Proteobacteria and Bacteroides were the dominant groups of planktonic bacteria. The results of the distance-based redundancy analysis demonstrated that chemical oxygen demand, chlorophyll a, and dissolved oxygen constituted the primary environmental factors affecting the planktonic bacterial community structures. The heatmap also showed that NH4+- N, temperature, and salinity levels were also related to certain planktonic bacteria. This study preliminarily identified the distribution of the surface bacterial plankton community and its response to changes in environmental factors in the sea area near Xiasanhengshan Island. The results provide a preliminary basis for assessing the health and stability of the IMTA system in open sea areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call