Abstract
Note: BP, MV and LG, KG contributed equallyBackgroundRelapsed acute myeloid leukemia (AML) remains the most common reason for allogeneic hematopoietic cell transplant (HCT) failure. Thus, understanding AML immune escape mechanism is important for improving the odds of curing HCT patients with AML. Downregulation of HLA Class I and II expression by AML is one of the potential immune escape mechanisms. Therefore, treatment to restore HLA surface expression is crucial to prevent and treat relapse. Endogenous cytokines, such as IFN-γ, have been shown to stimulate HLA expression but are poorly tolerated by patients. However, two hypomethylating agents (HMA), decitabine (Dec) and azacitadine (Aza), that are routinely used in AML treatment are known to augment HLA expression. For AML, HMAs are often combined with venetoclax (Ven), a drug that blocks the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein. Thus, while HMAs have been reported to increase HLA expression, what is unknown is whether these agents impact individual HLA loci differently and whether Ven has any impact on HLA expression. To address these questions, we treated the THP-1 cell line with Dec, Aza or Ven and measured changes in cell-surface expression of HLA proteins by flow cytometry using locus-specific HLA mAbs.MethodsTHP-1 cells were incubated with IFN-γ (500 U/mL), Aza (2µM), Dec (5µM), or Ven (30nM) for 48 hours (drug concentrations were determined by earlier titration experiments). THP-1 cells are a monocytic cell line, derived from the peripheral blood of a childhood case of acute monocytic leukemia (M5 subtype), that express HLA Class I and HLA-DR but not HLA-DQ or -DP under basal conditions, although they are inducible by IFN-γ. Thus, the induction of HLA Class II expression by IFN-γ serves as a positive control. Isotype controls were included to measure background. Data is presented as the difference in MFI (delta MFI) between cells treated with a drug and those treated with diluent only.ResultsTreatment of THP-1 cells with either IFN-γ or Dec led to increases in Class I HLA-A, -B & -C (Figure 1) compared to untreated cells (a mean fold increase of 1.4 and 1.2, respectively). Notably, Aza did not stimulate additional HLA-C expression and induced less of an increase in HLA-A & -B expression (an increase of 1.1-fold) than IFN-γ or Dec. Treatment of THP-1 cells by Ven did not induce a change in HLA Class I expression.For Class II, IFN-γ or Dec increased HLA-DR, -DQ and -DP expression in comparison to untreated cells (Figure 1). IFN-γ induced greater HLA-DR expression compared to Dec (an increase of 2.3-fold and 1.5-fold, respectively), and both stimulated similar increases in HLA-DQ (increases of 1.5-fold and 1.4-fold, respectively) & -DP (increases of 1.9-fold and 1.5-fold, respectively). However, treatment of cells with either Aza or Ven did not lead to changes in HLA Class II expression.DiscussionPrevious studies have illustrated the ability of IFN-γ to induce HLA Class II expression in THP-1 cells, however, data for Dec to induce HLA Class II expression was unconfirmed. We report differences in the degree to which IFN-γ and Dec are capable of stimulating HLA-DR with IFN-γ being more potent. The inability of Aza to induce HLA Class II expression in THP-1 cells may be related to the differing drug activating pathways of the two HMAs. Indeed, there are conflicting reports as to whether Aza can stimulate HLA Class II expression. Though Ven treatment of THP-1 cells did not impact HLA expression, because it is given with HMAs, it remains to be seen what effect these drugs may have on HLA expression when administered together. Additional studies to confirm these observations in patient-derived AML blasts are ongoing.ConclusionWe report that HMAs increased expression of HLA-A, -B, & -C loci and Dec but not Aza stimulated HLA-DR, -DQ, and -DP expression in THP-1 cells. Given these data, Dec may be superior in increasing HLA Class II expression post-HCT. [Display omitted] DisclosuresMarcucci: Abbvie: Other: Speaker and advisory scientific board meetings; Agios: Other: Speaker and advisory scientific board meetings; Novartis: Other: Speaker and advisory scientific board meetings. Al Malki: Neximmune: Consultancy; CareDx: Consultancy; Jazz Pharmaceuticals, Inc.: Consultancy; Rigel Pharma: Consultancy; Hansa Biopharma: Consultancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.