Abstract

ABSTRACT The effects of the independent variables, milk homogenization pressure (p1), concentration factor of milk microfiltration (i) and pH on the rheological properties of rennet milk gels were studied. Nondestructive oscillatory rheometry was used to determine rennet coagulation time (RCT), curd firming rate (CFR) and cutting time (CT). A central composite design, comprising two levels of i (1 and 2), pH (6.4 and 6.6) and p1 (0 and 8 MPa), was applied. Second‐order polynomial models successfully described (R2 > 0.92) the relationship between processing parameters and rheological properties of the gels. pH had the most important influence on RCT, while CFR and CT were strongly influenced by i, pH and the interaction of i and pH. In contradiction to studies on active filler interactions for acid milk gels, a discrepancy was observed between results obtained by compression test and rheometry. Rennet gel firmness strongly decreased with a rise in p1 when measured using the compression test, whereby CFR increased with an increase in p1 when measured using rheometry. The latter result corresponds to higher storage modulus values after a certain time indicating higher gel stiffness. This effect was stronger for concentrated milk than for unconcentrated milk.PRACTICAL APPLICATIONSThe use of microfiltration (MF) and homogenization may reduce raw material and processing time in conventional cheese manufacture. However, MF markedly influences milk composition, and homogenization alters the particle size distribution of fat globules. Hence, both technologies may influence rennet‐induced gel formation, syneresis, cheese composition and quality. Curd firmness of homogenized milk is often too weak to resist the extensive curd treatment applied in semi‐hard cheese manufacture which causes loss of curd fines during the syneresis process and finally decreases cheese yield. MF leads to high curd firmness if cutting is not performed at the appropriate time, which unnecessarily extends processing time. The study of the effect of the individual treatments, as well as of the combination of both on rennet‐induced gel formation, is the first important step to evaluate their impact on further processing steps in cheese making. The combination of both technologies may overcome the antagonistic effect of the individual technology as low curd firmness due to homogenization can be compensated by MF that increases curd firmness and vice versa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call