Abstract
The effect of a heat source and temperature gradient on Brinkman–Bènard Triple-Diffusive magneto-Marangoni (BBTDMM) convection in a two-layer system is investigated. The two-layer system is horizontally infinite and is surrounded on all sides by adiabatic boundaries. It is exposed to basic uniform and non-uniform temperature profiles and heat sources. The appropriate eigenvalues and thermal Marangoni numbers (TMNs), which depend on temperature and concentration, are obtained for the temperature profiles (TPs) for lower rigid and higher free boundaries with surface tension. The transformed system of ordinary differential equations is solved by using an exact technique. For all three TPs, the impact of significant relevant parameters on these eigenvalues, and hence on BBTDMM convection, are investigated versus the thermal ratio. It is observed that, by increasing the values of the modified internal Rayleigh number for the fluid layer and the solute Marangoni numbers, the Darcy number, and the viscosity ratio for the set of physical parameters chosen in the study, one can postpone BBTDMM convection. Higher values of the modified internal Rayleigh numbers for the porous layer augment BBTDMM convection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.