Abstract

The conventional methodology of heat pump integration has found application in various industries, including cheese production, spray drying, milk evaporation systems, brewing, and meat processing. While several approaches have been developed for optimizing direct and indirect heat recovery in non-continuous industrial processes, the optimal integration of heat pumps in non-continuous processes remains a challenge.This paper introduces a systematic methodology that leverages extensive datasets of time-resolved industrial process data to determine the optimal heat pump integration and the level of heat pump load flexibility that maximizes the economic benefit. Thus, the work establishes a connection between the domain of Process Integration and heat pump load flexibility. Additionally, the study provides insights on the requirements for load flexibility during the design phase of the heat pump, offering an estimation on the need for research on heat pump flexibility.The findings indicate the presence of a load flexibility threshold in the examined case study, beyond which additional load flexibility yields diminishing returns. Furthermore, the study shows that different heat pump integration parameters are chosen based on the heat pump’s capability for load flexibility. Within the investigated case, a heat pump with a minimum load of 55% increases the net present value by 19.3% compared to a load inflexible heat pump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call