Abstract

The risk of kidney stone presentations increases after hot days, likely due to greater insensible water losses resulting in more concentrated urine and altered urinary flow. It is thus expected that higher temperatures from climate change will increase the global prevalence of kidney stones if no adaptation measures are put in place. This study aims to quantify the impact of heat on kidney stone presentations through 2089, using South Carolina as a model state. We used a time series analysis of historical kidney stone presentations (1997–2014) and distributed lag non-linear models to estimate the temperature dependence of kidney stone presentations, and then quantified the projected impact of climate change on future heat-related kidney stone presentations using daily projections of wet-bulb temperatures to 2089, assuming no adaptation or demographic changes. Two climate change models were considered—one assuming aggressive reduction in greenhouse gas emissions (RCP 4.5) and one representing uninibited greenhouse gas emissions (RCP 8.5). The estimated total statewide kidney stone presentations attributable to heat are projected to increase by 2.2% in RCP 4.5 and 3.9% in RCP 8.5 by 2085–89 (vs. 2010–2014), with an associated total excess cost of ~ $57 million and ~ $99 million, respectively.

Highlights

  • Kidney stone disease is a painful condition affecting roughly one in eleven Americans, the incidence of which has increased in the last 20 years, among women and ­adolescents1,2

  • As global ambient temperatures increase from climate change, it is expected that the prevalence of kidney stone disease and associated acute kidney stone presentations will follow

  • The increase in the proportion of heat-related kidney stone presentations per 5 year period above the 2010–2014 baseline is 0.62% and 0.77% in the 2025–2029 period and 2.2% and 3.9% in the 2085–2089 period (RCP 4.5 and 8.5, respectively). This analysis generated a projection of emergent kidney stone presentations and related costs in South Carolina under two different scenarios of climate change, one scenario with high future greenhouse gas emissions (RCP 8.5) and one path assuming more aggressive future climate mitigation policies (RCP 4.5)

Read more

Summary

Introduction

Kidney stone disease (nephrolithiasis) is a painful condition affecting roughly one in eleven Americans, the incidence of which has increased in the last 20 years, among women and ­adolescents. It is well established that high ambient temperatures increase the risk of developing kidney stone disease and presenting with acute, symptomatic ­stones. The evidence in support of the relationship between ambient climate and kidney stone disease first arose from observations that kidney stone presentations increase in warmer months, and that there is a North to South increase in kidney stone incidence in the United ­States. As global ambient temperatures increase from climate change, it is expected that the prevalence of kidney stone disease and associated acute kidney stone presentations will follow. The current study aims to quantify the attribute risk and associated cost of kidney stone presentations as a function of heat and humidity under two scenarios of climate change in South Carolina. By modeling two scenarios of future climate change—one more aggressive, one more conservative—we can compare how the burden of kidney stone disease as reflected by acute presentations may be affected by climate policy

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call