Abstract
Can high-energy transient events affect life on a planet? We provide a review of the works that have tried to answer this question. It is argued that that gamma ray bursts, specifically those of the long class, are among the most dangerous astrophysical sources for biotic life and may exert evolutionary pressure on possible life forms in the universe. Their radiation can be directly lethal for biota or induce extinction by removing most of the protective atmospheric ozone layer on terrestrial planets. Since the rate of long gamma ray bursts is proportional to the birth rate of stars but is reduced in metal rich regions, the evolution of the “safest place” to live in our galaxy depended on the past 12 billion years of evolution of the star formation rate and relative metal pollution of the interstellar medium. Until 6 billion years ago, the outskirts of the galaxy were the safest places to live, despite the relatively low density of terrestrial planets. In the last 5 billion years, regions between 2 and 8 kiloparsecs from the center, featuring a higher density of terrestrial planets, gradually became the best places for safe biotic life growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.