Abstract

The impact of gravel excavation on a groundwater dependent ecosystem (GDE) in a glacial outwash plain was determined using a combination of time-series stable isotopic measurements (δ2H and δ18O) and a numerical flow model of lake–groundwater interaction. Isotopic analyses of the lake and groundwater indicated a shift from a dominance of evaporative enrichment to more meteoric conditions, confirming the hypothesis of increased recharge following forest clearing and gravel extraction from an esker on the outwash plain. The effect of these land-use changes on source water for the GDE was quantified by simulating the lake water budget, seepage, and groundwater conditions for a period spanning pre- and post-mining activity. Enhanced cycling of shallow groundwater, driven by increased recharge in the gravel excavation area, was predicted to cause annual groundwater discharge pulses greater than baseline conditions for the groundwater-fed lake. The additional groundwater discharge represents approximately 4% of the annual lake budget, increasing the flushing rate of the lake. The influence of regional groundwater conditions, represented by variation of water table gradient and outwash hydraulic conductivity, and an alternative excavation location were investigated in a sensitivity analysis. Simulation results illustrate that a simple groundwater capture zone analysis for the GDE could be used to determine a location for gravel excavation that would reduce impact on GDE water source.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.