Abstract

Abstract The use of graphene as a template layer for the heteroepitaxy of III-nitrides (GaN and AlN) has gained interest due to the hexagonal arrangement of the sp2 hybridized carbon atoms being similar to the (0001) c-plane of wurtzite GaN. In this study, the nucleation of GaN and AlN by metalorganic chemical vapor deposition on quasi-free standing epitaxial graphene (EG) was investigated. We observed that the nucleation of AlN and GaN was preferential along the periodic (1 1 ¯ 0n) EG coated step edges and at defects sites on the (0001) terraces due to the enhanced chemical reactivity at those regions. The density of nuclei on the (0001) terraces of EG increased with the incorporation of nitrogen defects into the graphene lattice via NH3 exposure as was evident from surface chemical analysis by XPS. Raman spectral mapping showed that GaN selectively nucleates on regions of few-layered EG as opposed to regions of multi-layered EG. HR-TEM also revealed that the EG underlayers were highly defective in the region of GaN nucleation, however, the GaN nuclei were single crystalline, c-axis oriented and were free of threading dislocations. In contrast, polycrystalline islands of AlN were found to nucleate on EG without producing disorder in the underlying EG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.