Abstract

Growth of mid-latitude ice sheets during the glacial cycles of the Quaternary repeatedly reorganises the pattern of groundwater flow on a continent-wide scale. Relatively small scale non-glacial catchments are replaced by catchments which are integrated on the scale of continental ice sheets. Simulations are presented of the response to glaciation of a large part of the western European groundwater system during the last two (Saalian, Weichselian) glacial cycles. A two-dimensional model along an ice sheet flowline from western Sweden to The Netherlands illustrates the impact of glaciation on flow in the vertical plane, and a vertically integrated model illustrates its impact on areal patterns of flow. Hydraulics heads, hydraulic gradients and flow velocities are increased far above their modern values, and relatively shallow aquifers are completely flushed out during glacial periods. There are significant implications for groundwater chemistry and geological structures. Large seepage pressures generated near to ice sheet margins and major impacts on the distribution of effective pressures will produce structures such as hydrofractures, sediment dykes, sediment volcanoes, loading structures etc. The model can be readily applied to hydrocarbon resorvoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.