Abstract

Deciphering processes that contribute to genetic differentiation and divergent selection of natural populations is useful for evaluating the adaptive potential and resilience of organisms faced with various anthropogenic stressors. Insect pollinator species, including wild bees, provide critical ecosystem services but are highly susceptible to biodiversity declines. Here, we use population genomics to infer the genetic structure and test for evidence of local adaptation in an economically important native pollinator, the small carpenter bee (Ceratina calcarata). Using genome-wide SNP data (n = 8302), collected from specimens across the species' entire distribution, we evaluated population differentiation and genetic diversity and identified putative signatures of selection in the context of geographic and environmental variation. Results of the analyses of principal component and Bayesian clustering were concordant with the presence of two to three genetic clusters, associated with landscape features and inferred phylogeography of the species. All populations examined in our study demonstrated a heterozygote deficit, along with significant levels of inbreeding. We identified 250 robust outlier SNPs, corresponding to 85 annotated genes with known functional relevance to thermoregulation, photoperiod, and responses to various abiotic and biotic stressors. Taken together, these data provide evidence for local adaptation in a wild bee and highlight genetic responses of native pollinators to landscape and climate features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call