Abstract

Epinephrine is the first-line medical treatment for anaphylaxis, a life-threatening allergic syndrome. To treat anaphylaxis, backcountry recreationalists and guides commonly carry epinephrine autoinjectors. Epinephrine may be exposed to cold temperatures and freezing during expeditions. An epinephrine solution must contain 90% to 115% of the labeled epinephrine amount to meet United States Pharmacopeia standards. The purpose of this study was to determine whether freeze-thaw cycles alter epinephrine concentrations in autoinjectors labeled to contain 1.0 mg/mL epinephrine. A further objective was to determine whether samples continued to meet United States Pharmacopeia concentration standards after freeze-thaw cycles. Epinephrine from 6 autoinjectors was extracted and divided into experimental and control samples. The experimental samples underwent 7 consecutive 12-hour freeze cycles followed by 7 12-hour thaw cycles. The control samples remained at an average temperature of 23.1°C for the duration of the study. After the seventh thaw cycle, epinephrine concentrations were measured using a high-performance liquid chromatography assay with mass spectrometry detection. The mean epinephrine concentration of the freeze-thaw samples demonstrated a statistically significant increase compared with the control samples: 1.07 mg/mL (SD ± 8.78; 95% CI, 1.04 to 1.11) versus 0.96 mg/mL (SD ± 6.81; 95% CI, 0.94 to 0.99), respectively. The maximal mean epinephrine concentration in the experimental freeze-thaw group was 1.12 mg/mL, which still fell within the range of United States Pharmacopeia standards for injectables (0.90 to 1.15 mg/mL). Although every attempt should be made to prevent freezing of autoinjectors, this preliminary study demonstrates that epinephrine concentrations remain within 90% to 115% of 1.0 mg/mL after multiple freeze-thaw cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.