Abstract
Intensive harvesting of forest residues for energy production may lead to the depletion of organic matter and mineral nutrients in the forest floor. In order to restore nutrient content wood ash has been suggested as a fertiliser. Ectomycorrhizal (EM) fungi are involved in the nutrient uptake of forest trees and this study investigates the influence of intensive harvesting and wood ash fertilisation on the external EM mycelium in forest soil. Nylon mesh bags filled with sand were buried in September 1997 in field plots which had or had not been intensively harvested. The effect of wood ash on the production of external EM mycelium was studied in mesh bags amended with wood ash. Mesh bags were retrieved in May and October 1998. The relative amount of fungal mycelia in the mesh bags was estimated with phospholipid fatty acid analysis. The fungi colonising the mesh bags were mainly (>90%) ectomycorrhizal. Fungal biomass in the mesh bags was low in the spring but high in the autumn. No significant effect on EM fungal biomass was observed in the mesh bags collected from intensively harvested plots compared with those from control plots, but wood ash amendment resulted in 2.4 times more EM fungal biomass (P<0.05). The effect of external EM mycelium on the dissolution of wood ash was studied in mesh bags filled with wood ash, using mesh bags buried in soil isolated from roots as EM-free controls. The external EM mycelium had no effect on the dissolution rate of the wood ash. 80% of the potassium was lost from the wood ash within a month, whereas no phosphorus was lost during the experimental period (up to 13 months).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.