Abstract

Recent reforms in engineering education have emerged to meet the changing needs of engineers, however sparse research exists that comprehensively assesses the outcomes associated with such engineering education efforts. Accordingly, there is an urgent need for educational approaches tied to assessing engineering students’ performance, retention, and impact.This study's purpose is to explore the relationship between sequential chemical engineering degree projects and students’ performance, engineering efficacy, multidisciplinarity, and retention. The projects for this education for chemical engineers research are thematically focused laboratory experiments embedded in a four-year chemical engineering program. Each project component is connected to the next, is increasingly complex as courses advanced, and is aligned with essential course content. This connectivity enables students to participate in logically sequenced experiments that culminate in well-developed senior laboratory projects. This study's educational impact was determined via comparison between seniors’ and freshmen’ performance, efficacy and retention.Results of this research indicate that the use of degree projects in chemical engineering education is impactful, resulting in students’ increased understanding of experimentation and course content; meaningful, resulting in statistically significant increased student chemical engineering efficacy; and engaging, resulting in students’ satisfaction with program impact, engagement with peers during experimentation, and dramatically increased student retention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call