Abstract
We previously demonstrated how mouse spermatozoa can be efficiently stored for two years in a -80°C freezer, maintaining their ability to fertilize mouse eggs. The main objective here was to evaluate the effects of five years at -80°C compared to liquid nitrogen storage (LN2 , control condition) on mouse sperm viability, physiological parameters, and fertilization capacity. Three different strains were used: C57BL/6N, C57BL/6J and CD1. Flow cytometry experiments were performed to analyze sperm viability (SYBR-14 + Propidium Iodide +Hoechst33342), the intracellular calcium concentration (Fluo 3-AM), the membrane lipid disorder (Merocyanine 540), and the mitochondrial activity (MitoTracker Red) in live spermatozoa. The in vitro fertilization (IVF) was used to evaluate the sperm fertilizing ability. Flow cytometry analysis showed that the percentage of live cells are reduced in B6N and B6J, but not in CD1 mice. However, in the live population no differences in terms of intracellular calcium concentration, membrane lipid disorder, and mitochondrial activity were reported when comparing both biobanking methods. Spermatozoa stored at -80°C for 5years successfully fertilized the eggs and developed mouse embryo normally both in culture and in vivo, generating live pups with no differences compared to control samples stored in LN2 . Long-term mouse sperm storage at -80°C (five years) could be considered an ideal alternative to the most common LN2 approach, giving economical and logistic advantages. Moreover, the precise information originated from the flow cytometry analysis stands up this technique as an optimal strategy to evaluate the sperm quality and ranking. It is demonstrated here the possibility to store mouse spermatozoa for up to five years in a -80°C freezer with no significant differences compared to the storage in LN2 in terms of fertilizing ability, sperm viability, intracellular calcium concentration, membrane lipid disorder, and mitochondrial activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.