Abstract

In civil engineering, the use of fibers in construction has spread recently, because of their many benefits in terms of increasing the cohesion of buildings and their thermal insulation. In addition to having several good physical and mechanical properties. Thermal insulation has become an important thing in the field of construction. Because it is linked to increasing the lifespan of buildings and predicting their thermal behavior. It includes increasing energy efficiency and reducing its costs. Fibers are used to increase thermal insulation, because it creates voids inside the structures that are within its content, and thus impedes the transfer of heat, regardless of the type of transfer by convection, radiation, or conductivity. This study aims to determine the amount of thermal insulation in compressed earth bricks with dimensions of 20 × 10 × 10 cm3, to which palm fibers and glass are added in different proportions: 0%, 0.1%, 0.2%, 0.3%, 0.4% and 0.5%.In earthen bricks composed of soil, sand and lime. The study includes the physical, mechanical and thermal properties of these bricks. We focus on thermal insulation in the best samples in terms of hardness. Laboratory samples were taken according to standard experiments in university laboratories. Preliminary results showed a decrease in bulk density between 6% and 8.34%, an increase in mechanical stresses between 42.85% and 45.45%, and an increase in thermal insulation between 26% and 29%. These results give us an overview of the impact of using fibers in construction in terms of increasing weight bearing and predicting the amount of thermal insulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call