Abstract

The phase transition problem of methane hydrate in porous sediments is solved. Based on the obtained solution, the impact of faulting on the stability conditions of gas hydrates is investigated by the numerical modeling of the filtration and thermal regimes in the sedimentary cover of the Central Basin of Lake Baikal within the segment of the anomalous behavior of the bottom simulating reflector (BSR). It is assumed that such behavior is caused by the tectonic action. The calculations testify to the plausibility of the proposed model of formation of the anomalous area with total decomposition of the contained hydrates. It is shown that dissociation of gas hydrates in sediments due to faulting and the subsequent uplift of the products of these transformations along the incipient channel toward the bottom of the lake can result in the extensive accumulation of gas hydrates on this surface. It is also shown that if the total amount of the free gas, which left the hydrate dissociation zone, reached the level of the lake surface at normal pressure and temperature, its volume could be equivalent to the resources of a medium-size gas field. The results of numerical modeling the violation of the gas-hydrate stability conditions in Lake Baikal sediments can also be valid for the other regions with hydrate-bearing sediments if the case specific conditions and regional tectonic activity are taken into account.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call