Abstract
This work studies the complex interactions resulting from the application and control of Exhaust Gas Recirculation (EGR) on a production heavy-duty diesel engine system, and its effectiveness in reducing NOx emissions. The coupling between EGR, the Variable Geometry Turbocharger (VGT) and the EGR cooler critically affects boost pressure, air/fuel ratio (A/F), combustion efficiency and pumping work. It is shown that EGR provides an effective means for reducing flame temperatures and NOx emissions, particularly under low A/F ratio conditions. However, engine thermal efficiency tends to decrease with EGR as a result of decreasing indicated work and increasing pumping work. Combustion deterioration is predominant at higher load, low speed and low boost conditions, due to a significant decrease of A/F ratio with increasing EGR. For conditions allowing the VGT to maintain high enough boost and hence A/F ratio, efficiency losses with increased EGR are largely attributed to increased pumping work. Finally, the total system heat rejection increases significantly due to EGR cooling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.