Abstract

A growing body of research suggests exercise improves inhibitory control functions. We tested if exercise-related inhibitory control benefits extend to food-related inhibitory control and differ by calorie content, time of day, and weight status. One hundred thirty-eight individuals were pseudo-randomly assigned to a morning or evening group. Each subject participated in two lab sessions where they completed questionnaires (rest session) or walked on a treadmill at 3.8mph (exercise session) for 45 min. After each session, participants completed both a high-calorie and low-calorie go/no-go task while N2 and P3 event-related potentials (ERP), both neural indicators of inhibitory control, were measured. Participants also rated food images for valence and arousal. While N2 and P3 difference amplitudes were larger to high-calorie than low-calorie foods, neither exercise nor time of day affected results. Individuals had faster response times after exercise without decreases in accuracy. Arousal and valence for high-calorie foods were lower after exercise and lower for all foods after morning compared to evening exercise. In a subset of individuals with obesity and normal-weight individuals, individuals with obesity had larger N2 difference amplitudes after morning exercise, while normal-weight individuals had larger P3 difference amplitudes to high-calorie foods after exercise. Results suggest moderate exercise did not affect food-related inhibitory control generally, although morning exercise may be beneficial in improving early recruitment of food-related inhibitory control in individuals with obesity. Moderate exercise, particularly in the morning, may also help manage increased attention allocated to food.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call