Abstract

Zinc oxide (ZnO) nanostructures are one of the most prominent areas of research in the present scenario. In this work, we have synthesized ZnO nanoparticles (NPs) using a simple sol–gel method with varying amounts of ethanol, changes in the amount of ethanol led to some promising changes in the quality of ZnO. With an increase in the amount of ethanol the size of ZnO, gets reduced since ethanol. UV–Visible (UV–Vis) spectroscopy and photoluminescence (PL) analysis confirmed the existence and behavior of ZnO nanostructure. Photoluminescence emission spectra suggested that the ethanol can suppress the zinc and oxygen vacancy hence improving the crystallinity of ZnO NPs. The X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), and Fourier transform infrared spectroscopy (FTIR) established the formation of ZnO NPs. This work explores the simple synthesis technique, bandgap tailoring, and impact of ethanol on ZnO nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.