Abstract

The factors affecting the transmission and geographic translocation of avian influenza viruses (AIVs) within wild migratory bird populations remain inadequately understood. In a previous study, we found that environmental transmission had little impact on AIV translocation in a model of a single migratory bird population. In order to simulate virus transmission and translocation more realistically, here we expanded this model system to include two migratory bird flocks. We simulated AIV transmission and translocation while varying four core properties: 1) Contact transmission rate; 2) infection recovery rate; 3) infection-induced mortality rate; and 4) migration recovery rate; and three environmental transmission properties: 1) Virion persistence; 2) exposure rate; and 3) re-scaled environmental infectiousness; as well as the time lag in the migration schedule of the two flocks. We found that environmental exposure rate had a significant impact on virus translocation in the two-flock model. Further, certain epidemiological features (i.e., low infection recovery rate, low mortality rate, and high migration transmission rate) in both flocks strongly affected the likelihood of virus translocation. Our results further identified the pathobiological features supporting AIV intercontinental dissemination risk.

Highlights

  • Pathogenic avian influenza (HPAI) viruses have repeatedly caused emergent outbreaks in poultry and pose a serious threat to both the poultry industry and human health

  • Since its first emergence in China in 1996, Highly pathogenic avian influenza (HPAI) H5N1 has caused multiple outbreaks in poultry, and more than 10 million domestic birds have been killed by infection or culled to control the virus [1]

  • The infection recovery rate in flock is seeded with an AIV (Flock A) significantly determined the likelihood that the virus reached Patches 3 and 5, with a lower infection recovery rate strongly increasing the likelihood of virus translocation

Read more

Summary

Introduction

Pathogenic avian influenza (HPAI) viruses have repeatedly caused emergent outbreaks in poultry and pose a serious threat to both the poultry industry and human health. Since its first emergence in China in 1996, HPAI H5N1 has caused multiple outbreaks in poultry, and more than 10 million domestic birds have been killed by infection or culled to control the virus [1]. Spillover to wild birds has facilitated the spread of the virus from East Asia to Central Asia, Europe, and Africa in three epidemic phases from 2003 to 2006, and the virus has become endemic in. In 2014, another novel reassortant virus, HPAI H5N8, emerged from the H5N1 Gs/GD lineage and caused large outbreaks in East Asia [9]. The virus spread intercontinentally to Europe, North America and other regions within a single year, and subsequently reassorted with local avian influenza viruses

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.