Abstract
The reasons why some animals have developed larger brains has long been a subject of debate. Yet, it remains unclear which selective pressures may favour the encephalization and how it may act during evolution at different taxonomic scales. Here we studied the patterns and tempo of brain evolution within the order Carnivora and present large-scale comparative analysis of the effect of ecological, environmental, social, and physiological variables on relative brain size in a sample of 174 extant carnivoran species. We found a complex pattern of brain size change between carnivoran families with differences in both the rate and diversity of encephalization. Our findings suggest that during carnivorans’ evolution, a trade-off have occurred between the cognitive advantages of acquiring a relatively large brain allowing to adapt to specific environments, and the metabolic costs of the brain which may constitute a disadvantage when facing the need to colonize new environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.