Abstract

Abstract The impact of El Niño–Southern Oscillation (ENSO) on the South Atlantic subtropical dipole mode (SASD) is investigated using both observations and model simulations. The SASD is the dominant mode of coupled ocean–atmosphere variability in the South Atlantic. This study focuses on austral summer, when both ENSO and SASD peak. It is shown that negative SASD events are associated with central Pacific El Niño events by triggering the Pacific–South American wave train (PSA). The latter resembles the third leading mode of atmospheric variability in the Southern Hemisphere (PSA2) and causes a weakening and meridional shift of the South Atlantic subtropical high, which then generates the negative SASD events. On the other hand, a strengthening of the South Atlantic subtropical high related to central La Niña teleconnections causes positive SASD events. The results herein show that the PSA2, triggered by central Pacific ENSO events, connects the tropical Pacific to the Atlantic. This connection is absent from eastern Pacific ENSO events, which appear to initiate the second leading mode of atmospheric variability in the Southern Hemisphere (PSA1). It is for this reason that previous studies have found weak correlations between ENSO and SASD. These findings can improve the climate prediction of southeastern South America and southern Africa since these regions are affected by sea surface temperature anomalies of both the Pacific and Atlantic Oceans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.