Abstract

In this study a 2D cubic chamber model filled with paraffin is analyzed with and without the inclusion of magnetic Fe3O4 nanoparticles at concentrations of 0.5, 1, 1.5 and 2 wt%, and an external magnetic field of intensities 0.005, 0.01, 0.015 and 0.02 T. It is ascertained that adding magnetic nanoparticles leads the horizontal temperature gradient to be reduced owing to increments in thermal conductivity. Additionally, this feature is found to be accelerated by applying an external magnetic field, which shapes highly conductive cluster formations of nanoparticles. However, since the increase in nanoparticle concentration and magnetic intensity increases the composite viscosity, there is an optimum configuration while applying both schemes. As such, the addition of 1 wt% nanoparticles provides the best results, as the melting time is reduced up to 25% compared to pure paraffin. Meanwhile, the melting time of a 1 wt% nanoparticle-containing phase change material (PCM) in the presence of an external magnetic field is improved up to 24% compared to the case with no external magnetic field. Also, the heat transfer coefficient of a 1 wt% nanoparticle-containing PCM both with and without an external magnetic field is also staggeringly enhanced compared to pure paraffin. Good correspondence with experimental data was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.