Abstract

Divertor tungsten (W) erosion source during edge localized mode (ELM) bursts in EAST is investigated based on optical emission spectroscopy on atomic neutral tungsten line emission at 400.9 nm. Both temporal evolution and total source strength are analyzed and compared in three different ELM mitigation schemes including natural ELMs, resonant magnetic perturbations (RMP) and 2.45 GHz lower hybrid wave (LHW). The mitigation of W source caused by single ELM impact at the divertor target is mainly attributed to the reduction of the W source production in the ELM decay phase. However, with the increase of ELM frequency, the time-averaged intra-ELM W source during an ELM cycle rises and dominates the evolution of the total W source with increasing fraction, which exhibits strong correlation with the core W level in the RMP scheme. In the natural ELM scheme, the pedestal electron temperature is found not only to control the effective W sputtering yield at target during ELMs, thus influencing the intra-ELM W source, but also to be related to the delay time between the divertor ELM WI emission and the core extreme ultraviolet bolometer (XUV) signal which can scale with the parallel ion transit time. Furthermore, the delay time is found to have more consistent dependence on the pedestal plasma collisionality. The rise time of intra-ELM WI emission increases when RMP or LHW is applied, revealing a different ELM mitigation mechanism in comparison with the natural ELM scheme. The temporal profiles of the intra-ELM WI emission in different ELM mitigation schemes are compared and the potential mechanism is discussed. Besides, the ELM mitigation effects with RMP are found to be asymmetric at the outer and inner divertor targets, which is characterized by the different variations of the intra-ELM W source strength and the rise time of WI emission with the ramp-up of RMP coil current. Divertor partial detachment is achieved simultaneously with strong ELM mitigation under a suitable RMP phase difference without additional gas puff.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.