Abstract

Abstract Climate change is shifting the distribution of species, and may have a profound impact on the ecology and evolution of species interactions. However, we know little about the impact of increasing temperature and changing rainfall patterns on the interactions between plants and their beneficial and antagonistic root symbionts. Here, we used a reciprocal multifactorial growth chamber experiment with seeds and soil microbial communities from three origins to investigate the impact of temperature and soil moisture on the growth, arbuscular mycorrhizal (AM) fungal colonization and root‐associated fungal community of a perennial herb. Moreover, we tested whether plants and AM fungi performed better or worse when plants were grown with their local soil biota, for example, due to plant adaptation or changes in the genetic or species composition of the soil microbial community. Temperature and soil moisture generally increased plant growth, whereas temperature but not soil moisture increased AM fungal colonization. The strength and direction of the plants' response to temperature were dependent on soil moisture and differed among plant populations, and AM fungal colonization was further affected by the origin of the soil microbial community. The root‐associated fungal community structure was impacted by temperature, soil moisture and the soil microbial origin, with interactive effects between the microbial origin and the abiotic environment. Plant biomass was lower when plants were grown with their local soil microbes, potentially due to intraspecific negative plant–soil feedbacks. Synthesis. Our findings indicate that, beyond a relatively uniform increase of plant growth and arbuscular mycorrhizal (AM) fungal colonization with increasing temperature, plants and root‐associated fungi of different origins will vary in their response to climate change (i.e. elevated temperature and shifts in rainfall). This may create pronounced, but difficult to predict, spatial and temporal variation in the ecology and evolution of plant–microbe interactions with a changing climate.

Highlights

  • Soil communities can have a large impact on plant community assembly, biodiversity and ecosystem functioning (Bardgett & van der Putten, 2014; van der Heijden, Bardgett, & van Straalen, 2008)

  • Beyond a relatively uniform increase of plant growth and arbuscular mycorrhizal (AM) fungal colonization with increasing temperature, plants and root‐associated fungi of different origins will vary in their response to climate change

  • Our findings illustrate that genetic variation among plant populations and the microbial community will play a major role in the response of plant growth and plant–microbial interactions to a changing climate, and that the local plant genotypes do – potentially due to negative plant–soil feedbacks – not always perform best when growing with their local soil microbial community

Read more

Summary

Introduction

Soil communities can have a large impact on plant community assembly, biodiversity and ecosystem functioning (Bardgett & van der Putten, 2014; van der Heijden, Bardgett, & van Straalen, 2008). Plants may perform better or worse in their local soil environment due to changes in the genetic and species composition of the local microbial community in response to the genetic or species composition of the local plant community (Kulmatiski, Beard, Stevens, & Cobbold, 2008; van der Putten et al, 2013). Such plant–soil feedbacks may be either positive, for example, leading to increased mutualist densities, or negative, for example, leading to increased pathogen densities (van der Putten et al, 2013)

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call