Abstract

Low-intensity transcranial electrical stimulation (tES) methods are a group of noninvasive brain stimulation techniques, whereby currents are applied with intensities typically ranging between 1 and 2 mA, through the human scalp. These techniques have been shown to induce changes in cortical excitability and activity during and after the stimulation in a reversible manner. They include transcranial direct current simulation (tDCS), transcranial alternating current simulation (tACS), and transcranial random noise stimulation (tRNS). Currently, an increasing number of studies have been published regarding the effects of tES on cognitive performance and behavior. Processes of learning and increases in cognitive performance are accompanied by changes in cortical plasticity. tES can impact upon these processes and is able to affect task execution. Many studies have been based on the accepted idea that by increasing cortical excitability (e.g., by applying anodal tDCS) or coherence of oscillatory activity (e.g., by applying tACS) an increase in performance should be detected; however, a number of studies now suggest that the basic knowledge of the mechanisms of action is insufficient to predict the outcome of applied stimulation on the execution of a cognitive or behavioral task, and so far no standard paradigms for increasing cortical plasticity changes during learning or cognitive tasks have been established. The aim of this review is to summarize recent findings with regard to the effects of tES on behavior concentrating on the motor and visual areas. WIREs Cogn Sci 2014, 5:649-659. doi: 10.1002/wcs.1319 For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.