Abstract

Reverse osmosis (RO) systems for secondary effluent water reuse frequently encounter severe biofouling due to the high nutrient concentration in the RO feed water. Deployment of negatively charged tight ceramic ultrafiltration (UF) may restrict biofouling in RO by phosphate limitation, since the tight ceramic UF can reject dissolved phosphate by electrostatic interactions. However, the organic matter and cations can potentially impact phosphate rejection by tight ceramic UF. In this study, the effects of organic matter and Ca2+ on phosphate rejection by the 3kDa tight ceramic UF membrane were investigated, using synthetic water containing natural organic matter (NOM) and effluent organic matter (EfOM), as well as secondary effluent water. Phosphate rejection was found to be linearly correlated to the zeta potential of the organics in the membrane feed water when the membrane was fouled by NOM. Furthermore, the EfOM-fouled membrane yielded higher phosphate rejection than the membrane fouled by the NOM due to additional adsorption of phosphate by the biopolymers. A preferential phosphate rejection was observed during effluent water filtration by the 3kDa tight ceramic UF membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call