Abstract
This study addresses a crucial gap in our understanding of flooding in the predominantly agricultural Qaa’Jahran watershed in Yemen, where urbanization, though currently limited in extent, is rapidly expanding. We aim to discern the effects of earth fissures on flood dynamics, particularly focusing on their present significance. It is noteworthy that, in the long run, these fissures are anticipated to accumulate soil and sediment, potentially heightening the risk of future flooding. To achieve this, we developed a comprehensive floodplain delineation model, incorporating field observations and rainfall data from the Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm. Additionally, advanced hydrologic and hydraulic models were integrated to accurately simulate runoff hydrographs and create flood inundation maps. Our findings underscore the considerable influence of earth fissures, effectively mitigating runoff volume, peak discharge, flood depths and inundated areas during storm events. It is imperative to emphasize that specific areas remain persistently vulnerable, with water levels surpassing one meter during historical floods. This reinforces the ongoing risk of flooding in targeted zones and emphasizes the necessity of implementing tailored flood management strategies. In conclusion, this study makes a significant contribution to the field, providing a comprehensive analysis of the intricate factors influencing flooding in the Qaa’Jahran watershed. The integration of flood inundation mapping, advanced hydrologic modelling and meticulous consideration of earth fissures offers a distinctive perspective on flood dynamics in a rapidly evolving and urbanizing environment. Furthermore, it highlights the critical implications for effective flood risk management and urban planning, not only in the Qaa’Jahran watershed but also in similar urbanizing regions worldwide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.