Abstract

The present review provides a framework within which the impact of dredging on biological resources that live on the sea bed (Benthic communities) can be understood, and places in perspective some of the recent studies that have been carried out in relation to aggregates dredging in European coastal waters. The impact of dredging works on fisheries and fish themselves, and on their spawning grounds is outside the scope of this review. We have, however, shown that empirical models for shelf waters such as the North Sea indicate that as much as 30% of total fisheries yield to man is derived from benthic resources, and that these become an increasingly important component of the food web in near-shore waters where primary production by seaweeds (macrophytes) and seagrasses living on the sea bed largely replaces that by the phytoplankton in the water column. Because dredging works are mainly carried out in near-shore coastal deposits, and these are the ones where benthic production processes are of importance in supporting demersal fish production, our review concentrates on the nature of ben thic communities, their sensitivity to disturbance by dredging and land reclamation works, and on the recovery times that are likely to be required for the re-establishment of community structure following cessation of dredging or spoils disposal. Essentially, the impact of dredging activities mainly relates to the physical removal of substratum and associated organisms from the seabed along the path of the dredge head, and partly on the impact of subsequent deposition of material rejected by screening and overspill from the hopper. Because sediment disturbance by wave action is limited to depths of less than 30m, it follows that pits and furrows from dredging activities are likely to be persistent features of the sea bed except in shallow waters where sands are mobile. Recent studies using Acoustic Doppler Current Profiling (ADCP) techniques suggest that the initial sedimentation of material discharged during outwash from dredgers does not, as had been widely assumed, disperse according to the Gaussian diffusion principles used in most simulation models, but behaves more like a density current where particles are held together during the initial phase of the sedimentation process. As a result, the principal area likely to be affected by sediment deposition is mainly confined to a zone of a few hundred metres from the discharge chute. Our review suggests that marine communities conform to well-established principles of ecological succession, and that these allow some realistic predictions on the likely recovery of benthic communities following cessation of dredging. In general, communities living in fine mobile deposits, such as occur in estuaries, are characterized by large populations of a restricted variety of species that are well adapted to rapid recolonization of deposits that are subject to frequent disturbance. Recolonization of dredged deposits is initially by these opportunistic species and the community is subsequently supplemented by an increased species variety of long-lived and slow-growing equilibrium species that characterize stable undisturbed deposits such as coarse gravels and reefs. Rates of recovery reported in the literature suggest that a recovery time of 6-8 months is charactristic

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call