Abstract

Motivated by outstanding aerodynamic performance and limited emissions, the blend-wing-body (BWB) aircraft equipped with a distributed propulsion (DP) system has become a possible layout for civil aircraft in the next generation. Due to the strong aero-propulsive interference (API) between the DP system and the airframe, the conventional integration of pressure and friction stress over the surface may fail to evaluate the aerodynamic power consumption of this layout. Here, the aero-propulsive integrated power balance approach is used alternatively to obtain the aerodynamic power consumption through flow data. We demonstrate that the API effects can enlarge both the lift and aerodynamic power consumption of this layout. The increase in power consumption is attributed to the enhanced viscous dissipation rate within the boundary layer. Wind tunnel experiments further demonstrate that the operation of the DP system can improve the stall characteristics. Our findings encourage limiting the inflow speed of the DP system to alleviate the enhancement in viscous dissipation rate and thus reduce the power consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call