Abstract

The field of space physics has a long history of utilizing dimensionality reduction methods to distill data, including but not limited to spherical harmonics, the Fourier Transform, and the wavelet transform. Here, we present a technique for performing dimensionality reduction on ion counts distributions from the Multiscale Mission/Fast Plasma Investigation (MMS/FPI) instrument using a data-adaptive method powered by neural networks. This has applications to both feeding low-dimensional parameterizations of the counts distributions into other machine learning algorithms, and the problem of data compression to reduce transmission volume for space missions. The algorithm presented here is lossy, and in this work, we present the technique of validating the reconstruction performance with calculated plasma moments under the argument that preserving the moments also preserves fluid-level physics, and in turn a degree of scientific validity. The method presented here is an improvement over other lossy compressions in loss-tolerant scenarios like the Multiscale Mission/Fast Plasma Investigation Fast Survey or in non-research space weather applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.