Abstract

The continuous wheat-maize planting has led to the increase in epidemic frequency of wheat diseases under climate change. Analyzation of the soil microbial composition in different rotation crops is essential to select alternative rotation regime. This study investigated the bacterial and fungal community abundance and composition, and potential microbe-microbe interactions in three rotations, including wheat-maize → spring maize (WMFS), wheat-soybean (WS) and continuous wheat-maize (WM) planting. The results revealed that there were 110, 156, and 195 bacterial, and 17, 8, and 15 fungal operational taxonomic units respectively enriched by WMFS, WS, and WM. WM increased the relative abundance of Actinobacteria and α-Proteobacteria in wheat, and the relative abundance and copy number of genus Fusarium in maize. WMFS and WS could decrease the abundance of Fusarium in summer-crop across the growth stages and in wheat at elongation. WS also increased the copy number of ammonia-oxidizing bacteria in wheat at flowering and harvest. Network analysis revealed that WM resulted in simple and isolated wheat network with small modules dominating and none Nitrospirae and β-Proteobacteria in the main modules. WS formed interconnected and intricate wheat network with the maximum number of large modules and module connectors. Under WS, positive correlation between antagonistic Streptomyces (Actinobacteria) and genus Fusarium was found in wheat. Soil physicochemical properties explained the majority of the variation in bacterial and fungal β-diversity in wheat (P < 0.01). Rotation regime switching from WM to WMFS and WS may effectively damp the risk of wheat disease and maintain the wheat yield in intensive cereal production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.