Abstract
To examine central corneal thickness (CCT) changes during in vivo rose bengal-green light corneal cross-linking (RG-CXL) and compare the CXL efficacy of different rose bengal formulations. After epithelium removal, the right eyes of rabbits were immersed in rose bengal solution prepared by different solvents (water, phosphate buffered saline, dextran, and hydroxypropyl methylcellulos [HPMC]) for 2 or 20 minutes, then the rose bengal distribution in the corneal stroma was analyzed by confocal fluorescence detection. During the RG-CXL process, the CCT was measured at seven time points. The left eyes served as the untreated control group. Corneal enzymatic resistance and corneal biomechanics were tested to compare the RG-CXL efficacy. The rose bengal infiltration depths were 120 and 200 µm for the 2- and 20-minute groups, respectively. CCT increased significantly after infiltration, then decreased significantly in the first 200 seconds of irradiation and decreased slowly for the next 400 seconds. The CCT of the 20-minute groups was significantly thicker than that of the 2-minute groups (P < .0001). All RG-CXL treatments improved the corneal enzymatic resistance and corneal biomechanics, with the effects being greater in the 20-minute groups. The inclusion of 1.1% HPMC in the rose bengal formulation helped to maintain CCT during irradiation while not affecting either the infiltration of rose bengal or the efficacy of RG-CXL. Within the range studied, RG-CXL efficacy increased with infiltration time. The incorporation of a 20-minute infiltration of 0.1% rose bengal-1.1% HPMC into the RG-CXL procedure may further improve the safety of the treatment and its prospects for clinical use. [J Refract Surg. 2022;38(7):450-458.].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.