Abstract

The development of road networks over the years has caused serious damage to biodiversity. However, few studies have explored the impact of different road grades on ecological network connectivity, especially at multiple levels and at different dispersal distances. Here, we propose an analytical framework based on the integrated graph theory and the circuit theory method, in order to model the ecological network of virtual species, to evaluate connectivity at the landscape, patch, and corridor levels, and to identify the key patches and key corridors that contribute the most to the maintenance of connectivity. The empirical analysis in this study was performed on six scenarios, which were designed by successively integrating different road grades into the landscape. On this basis, the impact of different road grades on the connectivity, key patches, and key corridors in Wuhan, China, were explored. The results showed that: (1) High-grade roads have a significant impact on landscape-patch-corridor connectivity, while medium-grade roads have a similar degree of impact on patch-level connectivity as high-grade roads do. (2) Species with long dispersal ability (25 km) are susceptible to roads at the landscape and corridor levels; species with low and medium dispersal abilities (10, 15 and 20 km) are vulnerable to roads at the patch levels. (3) The importance of key patches and the resistance of key corridors are significantly increased by the influence of roads, while their spatial distribution changes slightly. This integrated framework contributes to an evaluation of the impacts of different grades road on ecological processes, so as to better provide targeted suggestions for biodiversity conservation and transportation planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.