Abstract

The photoisomerization mechanism of the chromophore of bacterial biliverdin (BV) phytochromes is explored via nonadiabatic dynamics simulation by using the on-the-fly trajectory surface-hopping method at the semi-empirical OM2/MRCI level. Particularly, the current study focuses on the influence of geometrical constrains on the nonadiabatic photoisomerization dynamics of the BV chromophore. Here a rather simplified approach is employed in the nonadiabatic dynamics to capture the features of geometrical constrains, which adds mechanical restrictions to the specific moieties of the BV chromophore. This simplified method provides a rather quick approach to examine the influence of geometrical restrictions on photoisomerization. As expected, different constrains bring distinctive influences on the photoisomerization mechanism of the BV chromophore, giving either strong or minor modification of both involved reaction channels and excited-state lifetimes after the constrains are added in different ring moieties. These observations not only contribute to the primary understanding of the role of the spatial restriction caused by biological environments in photoinduced dynamics of the BV chromophore, but also provide useful ideas for the artificial regulation of the photoisomerization reaction channels of phytochrome proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.