Abstract

ABSTRACT Introduction Although, stress causes brain dysfunction, consumption of dark chocolate (DC) has positive effects on brain functions. The current study investigated the impact of different DC dietary patterns on synaptic potency and plasticity in the hippocampal CA1 area, as well as food intake and body weight in rats under chronic isolation stress. Methods Thirty-five rats were allocated into five groups of control, stress, and stress accompanied by three DC dietary patterns (stress-compulsory, -optional, and -restricted DC). The stressed rats on a compulsory diet only received DC and the ones on an optional diet received unlimited chow and/or DC. Also, the stressed rats on a restricted diet each received chow freely and only 4 g DC daily. Subsequently, the slope and amplitude of field excitatory postsynaptic potentials (fEPSPs) were assessed based on the Input-Output (I/O) curves and after the longterm potentiation (LTP). Moreover, food intake and body weight were measured for all groups. Results The fEPSP slope and amplitude in the I/O curves and after LTP decreased significantly in the stress group compared to the control group. Although the slope and amplitude both enhanced non-significantly in the optional DC diet, these parameters changed significantly in both compulsory and restricted DC dietary patterns compared to the stress group. Also, food intake and body weight decreased significantly in all DC groups. Conclusion The compulsory and restricted DC dietary patterns reversed the harmful effects of chronic isolation stress on the hippocampal synaptic potency, plasticity, learning, and memory. All DC diets, especially compulsory and restricted ones, reduced food intake and body weight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call