Abstract

AbstractThe current generation of landscape evolution models use a digital elevation model for landscape representation. These programs also contain a hydrological model that defines overland flow with the drainage network routed to an outlet. One of the issues with landscape evolution modelling is the hydrological correctness of the digital elevation model used for the simulations. Despite the wide use and increased quality of digital elevation models, data pits and depressions in the elevation data are a common feature and their removal will remain a necessary step for many data sets. This study examines whether a digital elevation model can be hydrologically correct (i.e. all depressions removed so that all water can run downslope) before use in a landscape evolution model and what effect depression removal has on long‐term geomorphology and hydrology. The impact on sediment transport rates is also examined. The study was conducted using a field catchment and a proposed landform for a post‐mining landscape. The results show that there is little difference in catchment geomorphology and hydrology for the non‐depression removed and depression removed data sets. The non‐depression removed and depression removed digital elevation models were also evaluated as input to a landscape evolution model for a 50 000 year simulation period. The results show that after 1000 years there is little difference between the data sets, although sediment transport rates did vary considerably early on in the simulation. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call