Abstract
To explore the impact of deep learning reconstruction (DLR) on image quality and machine learning-based coronary CT angiography (CTA)-derived fractional flow reserve (CT-FFRML) values. Thirty-three consecutive patients with known or suspected coronary artery disease who underwent coronary CTA and subsequent invasive coronary angiography were enrolled. DLR was compared with filtered back projection (FBP), statistical-based iterative reconstruction (SBIR), model-based iterative reconstruction (MBIR) Cardiac, and MBIR Cardiac sharp for objective image qualities of coronary CTA. Invasive fractional flow reserve (FFR) and quantitative flow ratio (QFR) were used as the reference standards. The diagnostic performances of different reconstruction approach-based CT-FFRML were calculated. A total of 182 lesions in 33 patients were enrolled for analysis. The image quality of DLR was superior to the others. There were no significant differences in the CT-FFRML values among these five approaches (all p > 0.05). Of the 182 lesions, 17 had invasive FFR results, and 70 had QFR results. Using FFR as a reference, MBIR Cardiac, MBIR Cardiac sharp, and DLR achieved equal diagnostic performance, slightly higher than the other reconstruction approaches (MBIR Cardiac, MBIR Cardiac sharp, and DLR: AUC = 0.82, FBP and AIDR: AUC = 0.78, all p > 0.05). Using QFR as a reference, the AUCs of FBP, SBIR, MBIR Cardiac, MBIR Cardiac sharp, and DLR were 0.83, 0.81, 0.86, 0.84, and 0.83, respectively (all p > 0.05). Our study showed that the DLR algorithm improved image quality, but there were no significant differences in the CT-FFRML values and diagnostic performance among different reconstruction approaches. • Deep learning-based image reconstruction (DLR) improves the image quality of coronary CTA. • CT-FFRML values and diagnostic performance of DLR revealed no significant differences compared to other reconstruction approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.