Abstract

Abstract A constrained data assimilation (CDA) system based on the ensemble variational (EnVar) method and physical constraints of mass and water conservations is evaluated through three convective cases during the Midlatitude Continental Convective Clouds Experiment (MC3E) of the Atmospheric Radiation Measurement (ARM) program. Compared to the original data assimilation (ODA), the CDA is shown to perform better in the forecasted state variables and simulated precipitation. The CDA is also shown to greatly mitigate the loss of forecast skills in observation denial experiments when radar radial winds are withheld in the assimilation. Modifications to the algorithm and sensitivities of the CDA to the calculation of the time tendencies in the constraints are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call