Abstract

Based on a detailed chemical mechanism, impacts of combustion characteristics and flame structure on soot formation in opposed-flow diffusion ethylene flames was studied with different stoichiometric mixture fractions in O2/N2 and O2/CO2 atmospheres. The results showed the followings. 1) In both atmospheres, with the increase of stoichiometric mixture fraction, the flame structure changed significantly. The stagnation plane shifted toward the oxidizer side. Furthermore, there were less C2H2 but more O and OH to occur in the soot inception zone, therefore the amount of soot in the flame decreased. 2) Compared with N2, CO2 had a suppression effect on soot formation, which was mainly due to thermal and direct chemical interaction effects of CO2. This is because the specific heat capacity of CO2 is higher than that of N2, which will cause the flame temperature to drop, and mole fractions of C2H2, H, O, OH and main PAHs to decrease. Soot oxidation played a dominant role, while soot surface growth was attributed to the secondary position. Meanwhile, when CO2 abounded in the flame, OH concentration was increased through the backward reaction of CO+OH=CO2+H, and this would be conducive to the oxidation of soot precursor and incipient soot particles. In addition, the results of maximum particle density indicated the thermal effect of CO2 on soot formation is more important than the direct chemical interaction effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.