Abstract
Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986–2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.